ACT3 & MNHTE 2018

Design and fabrication of high performance thermoelectric modules

Shengqiang Bai

(E-mail: bsq@mail.sic.ac.cn)

Shanghai Institute of Ceramics, Chinese Academy of Sciences

2018-10-07 @ Taipei

Outline

- **1. Brief introduction to SICCAS TE group**
- 2. Current status of thermoelectric modules
- 3. Topologic design of TEG modules
- 4. Interface design of TEG modules
- 5. Performance & service behavior testing
- 6. Summary

Our goal : Full chain TE technology development

22 Staffs : Multiple Disciplinary Team

Team Leader

Prof. Lidong Chen

Fundamental Research Leader

Prof. Xun Shi

Engineering Research Leader

Prof. Shengqiang Bai

Qin Yao	Associate Prof.	Organic TE	Jiehua Wu	Associate Prof.	Service behavior
Pengfei Qiu	Associate Prof.	Inorganic TE	Xugui Xia	Senior Engineer	Device integration
Ruiheng Liu	Associate Prof.	TE application	Ting Wu	Senior Engineer	Industrialization
Sanyin Qu	Research Assistant	Organic TE	Junqiang Song	Research Assistant	Industrialization
Tianran Wei	Research Assistant	Inorganic TE	Jincheng Liao	Engineer	Device measurement
Qihao Zhang	Research Assistant	Device design	Ming Gu	Engineer	Service behavior
Minghui Wang	Secretary		Chao Wang	Engineer	Device integration
Dudi Ren	Technician		Tingting Yang	Technician	
Jie Xiao	Technician		Hongxiu Zhou	Technician	

~30 Ph. D. / Master candidates in TE group

Platform: Support TE design, fabrication, measurements

Total Lab area: $\sim 1500 \text{ m}^2$ (in SICCAS Jiading campus)

- □ Synthesis & performances evaluations for TE materials: 4K ~ 1100K
- □ Fabrication & performances evaluations for TE modules: R.T. ~ 1200K
- □ Mass production of bulk materials (SKD, HH, SG, ...): ~50 kg/year
- □ Mass production of Bi_2Te_3 & SKD-based TEG modules: ~ 10 kW/year
- □ Measurement standards for TE materials & modules: IEA-AMT member

材料合成 (Materials preparation)

热处理 (Melting & annealing)

材料加工 (Materials & module)

材料切割 (Elements)

材料烧结 (Sintering)

接触电阻测试 (Element testing)

材料性能测试 (Materail testing)

器件性能测试 (Module testing)

TE materials applications: Wider with *ZT* **value improving**

TE module: The bridge connect material and application

Development history of TE materials & modules

- ♦ The continuous enhancement of TE materials performance enable the widespread practical applications. (Theoretical efficiency: 10 ~ 15%)
- Nevertheless, actual TE module development has remained stagnant with rather poor efficiencies. (Actual efficiency: 5%-8%)
- More than 70% researches focus on the validation of material performance (1 leg or π -shape).
- **TE module full chain technology including "Design Fabrication Evaluation" NOT established.**

Current status of TE modules for power generation

	Producer	TE materials	Efficiency	Source
	KELK	Bi ₂ Te ₃	7.2 %	JEMs-2014
	Marlow	Bi ₂ Te ₃	5.03 %	Website
	Thermonamic	Bi ₂ Te ₃	5 %	Website
Low-T.	Hi-Z	Bi ₂ Te ₃	4.5 %	Website
	Ferrotec	Bi ₂ Te ₃	5 %	
	ITRI	Bi ₂ Te ₃	5 %	
	SICCAS	Bi ₂ Te ₃	6 %	
	Marlow	skutterudite	N/A	JEMs-2013
	Furukawa	skutterudite	8 %	JEMs-2012
	SICCAS	skutterudite	9.8 %	
	SICCAS	segmented	12 %	EES-2017
High-T.	AIST	segmented	11 %	
	Fraunhofer	Half-Heusler	5.4 %	
	GMZ	Half-Heusler	4.5 %	Website
	SICCAS	Half-Heusler	6.2 %	NC-2015

Low efficiency & high cost is the bottleneck of TEG in industrial application Industrial application requirement:

- Conversion efficiency: >10%
- ◆ Service life: > 10 years

Energy saving & Emission reduction

Exhaust heat recovery

Waste heat recovery

Air- conditioner

The targets of development of TE modules

The principle of TE device structure design

 \bullet κ, ρ and α are temperature-dependent

• Geometry factor ξ : related to the height & cross-sectional area of TE leg

 ξ can not be simply optimized when κ , ρ and α are temperature-dependent

Topologic design: A useful tool to realize high efficiency

Traditional design approach:

Model	Principle	Solution method	Influence factors				Device conversion efficiency			
			effecti	(α,σ,κ) <i>vs</i> T	structure	electric	thermal			
					ve ^ i		Tactor	1055	1055	predicted
Energy balance	Global thermal equilibrium equation	algebra	×	averaging	A _P /A _n	*	*	11.9%	8.4%	42%
One- dimensi onal	Local energy balance differential equation	analytical	×	T- dependent	A _P /A _n	*	*	10.8%		29%

Design flow of device topologic optimization

◆ Full-parameter design based on service conditions

Goal

Three-dimensional Numerical modeling

Finite element method :

(1) Thermoelectric coupling constitutive equation : $\mathbf{q} = \alpha T \mathbf{J} - \lambda \nabla T$

 $\mathbf{J} = -\sigma(\nabla V + \alpha \nabla T)$

(2) Energy conservation equation & Charge continuity equation under steady state

$$\nabla \cdot \mathbf{q} = \dot{q}$$

$$\nabla \cdot \mathbf{J} = \mathbf{0}$$

③ Governing equation describing the temperature, potential distribution & thermal-electrical coupling

$$\nabla(\lambda \nabla T) + \frac{J^2}{\sigma} - TJ \cdot \left[\left(\frac{\partial \alpha}{\partial T} \right) \nabla T + \left(\nabla \alpha \right)_T \right] = 0$$
$$\nabla \cdot \left([\sigma] \nabla \varphi + [\sigma] [\alpha] \nabla T \right) = 0$$

④ Obtain the finite element equation by variational principle

$$\begin{bmatrix} K^{T} & 0 \\ K^{T\varphi} & K^{\varphi} \end{bmatrix} \begin{bmatrix} T_{e} \\ \varphi_{e} \end{bmatrix} = \begin{bmatrix} Q^{L} \\ I^{L} \end{bmatrix}$$

Three-dimensional Numerical modeling

✓ Relationship of "Performance – Structure" could be found out

Segment: A strategy to realize high efficiency

Leg geometry optimization of segmented module

Multi-parameter optimization of segmented module

Segmented BT/SKD module integration

P-SKD/MoCu junction Mo Zn Ni Ti Al Co Sb Ce Fe

n-SKD/MoCu junction

Microstructure and composition shows excellent interface bonding, no crack & no diffusion

Energy loss characterization

> Glass fibers with the average κ of 0.09 Wm⁻¹K⁻¹ cause a merely 1 % reduction in η_{max}

> Composition of each interface was optimized. $\rho_c \sim 40 \ \mu\Omega \cdot cm^2$ causes <2% loss in η_{max}

Characterization of the segmented BT/SKD module

Thermoelectric conversion efficiency:

> $\Delta T = 316$ °C, $\eta_{\text{max}} = 8\%$; $\Delta T = 541$ °C, $\eta_{\text{max}} = 12\%$;

Experimental data agree well with the simulated results;

> η_{max} reaches ~97% of the ideal efficiency based on the TE materials themselves.

Energy Environ. Sci., 2017, 10, 956-963.

Comparison with the literatures

Topologic design application: single-stage BT module

Energy Environ. Sci., 2016, 9, 3120-3127.

Device assembly factor: Energy loss

Interface : Key issue of high efficiency & high reliability

Electrical

- ✓ High electrical conductivity
- ✓ Low interfacial resistivity

Thermal

- ✓ High thermal conductivity
- ✓ Low contact resistivity

Mechanical

- ✓ Good bonding strength
- ✓ Minimize residual stress

Chemical

- ✓ Stable at high temperature
- ✓ Block interfacial diffusion

- Complex working conditions caused a complex interface behavior.
- Most of structural and functional failures of TE modules are caused by the evolution of the interfaces.
- A high reliable interface with minimized energy loss is the key issue to realize a TE module with both high efficiency and high reliability.

Working Conditions:

- > High Temp.
- > Large Temp. Diff.
- > Oxide & humidity
- > Corrosively
- > Thermal shock
- > Vibration

Interface

Interfacial physical properties: Influent performance

Interfacial chemical properties: Influent reliability

Structural failure:

- **Position:** Interface of intermetallic compounds.
- **Reasons:** Interfacial diffusion, chemical reaction, oxidation, sublimate,

Interface design must combining contact properties (strength, conductivity) & diffusion barrier.

Principle of choosing diffusion barrier(buffer) layer

Qualitative principle:

- Chemical : Reaction possible → Improve the bonding strength improvement Low diffusion speed → Improve the interface reliability
- Thermal & electrical : $10^1 \sim 10^2$ higher than TE materials \rightarrow Reduce energy loss
- CTE: close to TE materials → Reduce the stress
- Others: Melting point >> Working temperature

Candidate		Diffusion properties	MP/∘c	σ (10 6 S/m)	<i>K</i> (W/cm.K)	CTE (ppm)
Matrix	SKD	—— 873		0.06~0.2	0.02~0.03	9~11
	Ti	?	1700	2.4	2.2	8.4
Buffer layer	Zr	?	1852	2.4	2.3	5.8
	Hf	?	2227	2.8	2.3	5.9
	Nb	?	2467	8	5.4	7.1
	Та	?	3014	8	5.8	6.6
	Cr	?	1857	7.9	9.4	6.2
	Мо	?	2617	19	13.8	5.4

*Interfacial diffusion properties must be obtained by experiment.

Degradation mechanism: Inter-diffusion at interface

CoSb₃/TiSb/Ti CoSb₃/*TiCoSb*/*TiSb*₂/TiSb/Ti

The interfacial microstructure evolution is mainly caused by the Sb diffusion to form intermetallic compound layer and this layer causes the degradation and final destruction.

J. Alloys Compd. 2009, 477, 425

Optimization of interface microstructure

Ti-Al alloy: Balance high-T stability & bonding activity

In Ti-Al binary system, there exist several electrically conductive compounds with high-T stability, which are known easily form by solid state reaction.

- Maintain high reaction activity during sintering.
- Suppress activity after sintering or during high-T service due to the formation of stable Ti_xAl.
- The Ti_xAl layer should not raise interfacial thermal/electrical resistance, while maintaining good bonding strength.

Microstructure of Ti-Al interlayer

after annealing at 550°C

SEM and EPMA indicate the formation of Ti₃Al and TiAl alloys on the surface of Ti particles during high temperature annealing.

Sketch: Formation of Ti/Ti₃Al "core-shell" structure

Before sintering:

MoCu / (Ti+Al) / SKD

→ Ti & Al metals possess high activity and enable reaction and bonding during sintering. After sintering or during high temperature operation:

 $Ti+AI \rightarrow Ti+Ti_3AI$ (or TiAI)

→ Ti/Ti₃Al core/shell structure prevents further Ti-diffusion and realize high stability.

Stability of Ti-Al interlayer: Microstructure

High temperature stability for different Ti-based alloy interlayers.

SEM images of cross section of elements after aging at 600°C for 16 days in vacuum.

No (or less) formation of TiCoSb brittle phase on the interface.
 The formation of TiCoSb intermetallic layer is effectively prevented by Ti_xAl alloying.

Stability of Ti-Al interlayer: Diffusion layer

The growing speed of diffusion layer was greatly decreased after alloying Ti and Al.

Interfacial resistance of Ti_{100-x}Al_x / Yb_{0.6}Co₄Sb₁₂ joints

Ti interlayer: ρ_c increased by 12 times of its initial value after aging. **Ti-Al alloying interlayer:** ρ_c changed less than twice after aging.

Interface design target: Low energy loss & high reliability

SICCAS established interface solutions for several TE materials :

			Electrode					
materials	Content	σ (S/m)	к (W/m∙K)	CTE (10 ⁻⁶ K ⁻¹)		Barrier layer	ρ_{inter}	$\Delta \eta$
				Electrode	TE		(parent)	
Bi ₂ Te ₃	AlCu	3 ×107	300	20	15~22	Ni-Mo	< 10	< 3%
CoSb ₃	MoCu	2.6 ×107	98	10.3	9.7~12.8	Ti-Al	< 10	< 3%
Half- heusler	MoCu	2.6 ×107	98	10.3	9.8~11.5	Zr-Al	< 5	< 2%
SiGe	W-Si ₃ N ₄	4.4×10 ⁶	49	4	4	TiB ₂ - Si ₃ N ₄	< 20	< 5%

high throughput strategy: Screen interfacial diffusion barrier

- Interface got based on the TE elements
- High cost in try error experiments of TE elements fabrication
- Long time of screening for one by one selection: months ~ years

- Interface got **NOT** based on the TE elements
- Low cost in try error experiments of TE elements fabrication
- Short time of screening for one-time selection: weeks

high throughput strategy: Screen interfacial diffusion barrier

Barrie	er layer	Diffusion layer (650°C, 2D)			
Element	CTE/ppm	Content	Thickness/µm		
V	8.3	VSb(?)	~50		
Cr	6.2	CrSb ?	~40		
Ti	8.4	TiSb,TiSb ₂ , TiCoSb	~30		
Zr	5.8	ZrSb ₂	~20		
Hf	5.9	HfSb ₂ HfCoSb	~ 15		
Мо	5.4	Mo₃Sb ₇	~10		
Nb	7.0	NbSb ₂	< 10		
Та	6.6	TaSb ₂ TiCoSb	~5		
W	4.6	N/A	N/A		

* Cost and fabrication technique should be considered in selection.

Performance of SKD-based TE devices

Integration of SKD module

wafer

element

electrode

integration

Data sheet of SKD TE generation modules

package

TYPICAL CURVES

		-				-	
	Dimonsions	Couples	Hot-side	Cold-side	Voc	P _{max}	R _{Inter.}
	Dimensions	Coupies	Temp. (°C)	Temp. (°C)	(V)	(Watt)	$(m\Omega)$
	Module Size:		400	25	0.80	1.97	82
TEG5	$20 \times 20 \times 10 \text{mm}^3$	8	500	30	1.06	3.30	85
	Dice Size:		550	30	1.19	4.09	87
	$4 \times 4 \times 8 \mathrm{mm^3}$		600	35	1.31	4.93	88
	Module Size:		400	35	1.50	3.85	139
TEG10	$30 \times 30 \times 10 \text{ mm}^3$	10	500	40	1.77	5.72	142
(H-V)	Dice Size:	10	550	45	2.17	7.53	157
· · ·	$4 \times 4 \times 8 \mathrm{mm^3}$		600	45	2.53	9.54	173
	Module Size:		400	30	0.83	3.74	47
TEG10	$30 \times 30 \times 10 \text{ mm}^3$	10	500	35	1.11	6.33	48
(L-V)	Dice size:	10	550	40	1.24	7.86	49
	$6 \times 4.5 \times 8 \mathrm{mm^3}$		600	45	1.38	9.51	50
	Module Size:		400	40	2.62	9.37	180
	$50 \times 50 \times 10 \text{ mm}^3$	22	500	50	3.52	16.25	188
1EG25	Dice Size:	52	550	55	4.08	21.55	191
	5×5×8 mm ³	Γ	575	65	4.43	25.08	193

SICCAS TE group website

Performance of HH–based TE devices

Pb-free TE modules using HH alloys
Capability of working at 700 °C (hot side)
Output power up to 9 Watts (ΔT= 650°C)
Efficiency up to 6.2% @ ΔT= 650°C
Dimensions: 20mm×20mm×10mm(H)
Output power density up to 2.2 W/cm²

* HH materials provided by Prof. Tiejun Zhu (Zhejiang University)

TEG module testing

- 1. Agreement found in Electrical measurement of TE devices.
- 2. Significant measurement issues observed in heat flow measurement.
- 3. Measurement standard not established.

Including: Th & Tc, gas pressure, uniaxial pressure;

Vaccum pump on/off during testing;

Scanning mode (scanning speed, temperature stage,)

Definition of efficiency:

Module testing system in AIST

ULVAC-RIKO:PEM-2

Testing standard of TEG materials and modules

Annex VIII Participants

- IEA-AMT Thermoelectric Annex
 - Annex lead: Oak Ridge National Laboratory (H. Wang)
 - USA: GMZ (G. Joshi); Marlow (J. Sharp); GM R&D (J. Salvador); Army Research Laboratory (P. Taylor), NIST (J. Martin)
 - China: SICCAS (S.Q. Bai, L. Chen)
 - Canada: CANMET(Y.C. Tseng); University of Waterloo (H. Kleinke);
 - Germany: Fraunhofer IPM (J. König)
 - United Kingdom: NPL (A. Cuenat)
 - Korea: Korea Electrotechnology Research Institute (H.W. Lee)

- IEA-AMT members countries:
 - Finland: VTT
 - Israel:
 - Australia:

2 Managed by UT-Battelle for the Department of Energy

This project is supported by the International Energy Agency (IEA) under the Implementing Agreement on Advanced Materials for Transportation (AMT)

TEG module failure mode & service behavior

TEG module failure mode & service behavior

Life predict based on thermal dynamics

Square root of aging time / sec^{0.5}

Temperature/°C Predicted Service Life (b)/day Contact Resistivity/µΩ·cm² Predicted Service Life (a)/day $2.37 \times 10^{-4} \cdot t^{0.5} + 3.91$ 550 7642 53,346 $14.1 \times 10^{-4} \cdot t^{0.5} + 3.99$ 600 2011431 $63.5 \times 10^{-4} \cdot t^{0.5} + 3.76$ 650 11 75

Appl. Sci. 2017, 7, 952

Thank you for your attention !

